
hhh

Ast - A Generator for
Abstract Syntax Trees

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Ast - A Generator for Abstract Syntax Trees

Josef Grosch

Aug. 3, 1992

hhh

Report No. 15

Copyright 1992 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

Ast 1

1. Introduction

Ast is a generator for program modules that define the structure of abstract syntax trees and
provide general tree manipulating procedures. The defined trees may be decorated with attri-
butes of arbitrary types. Besides trees, graphs can be handled, too. The structure of the trees is
specified by a formalism based on context-free grammars. The generated module includes pro-
cedures to construct and destroy trees, to read and write trees from (to) files, and to traverse trees
in some commonly used manners. The mentioned readers and writers process ascii as well as
binary tree representations. All procedures work for graphs as well.

The advantages of this approach are: record aggregates are provided which allow a concise
notation for node creation. It is possible to build trees by writing terms. An extension mechanism
avoids chain rules and allows, for example lists with elements of different types. Input/output
procedures for records and complete graphs are provided. The output procedures and the interac-
tive graph browser facilitate the debugging phase as they operate on a readable level and know
the data structure. The user does not have to care about algorithms for traversing graphs. He/she
is freed from the task of writing large amounts of relatively simple code. All of these features
significantly increase programmer productivity.

Ast is implemented in Modula-2 as well as in C and generates Modula-2 or C source
modules. The following sections define the specification language, explain the generated output,
discuss related approaches, and present some examples.

2. Specification

The structure of trees and directed graphs is specified by a formalism based on context-free
grammars. However, we primarily use the terminology of trees and types in defining the
specification language. Its relationship to context-free grammars is discussed later.

2.1. Node Types

A tree consists of nodes. A node may be related to other nodes in a so-called parent-child

relation. Then the first node is called a parent node and the latter nodes are called child nodes.
Nodes without a parent node are usually called root nodes, nodes without children are called leaf

nodes.

The structure and the properties of nodes are described by node types. Every node belongs
to a node type. A specification for a tree describes a finite number of node types. A node type
specifies the names of the child nodes and the associated node types as well as the names of the
attributes and the associated attribute types. A node type is introduced by a name which can be
an identifier or a string. The names of all node types have to be pairwise distinct. A node type
can be regarded as a nonterminal, a terminal, or an abstract entity. Nonterminals are character-
ized by the character ’=’ following its name, terminals by the character ’:’, and abstract node
types by the characters ’:=’. Undefined node types are implicitly defined to be terminals without
attributes. The distinction between nonterminals and terminals is only of interest if concrete syn-
tax is described. In the case of abstract syntax this distinction does not make sense and therefore
nonterminal node types and eventually abstract ones suffice. Abstract node types are explained
in section 2.6.

Ast 2

Example:

If = .
While = .
’()’ = .
Ident : .
":=" : .
SCOPE := .

The example defines the node types If, While, and ’()’ to be nonterminals, the node types Ident

and ":=" to be terminals, and SCOPE to be an abstract node type.

The following names are reserved for keywords and can not be used for node types:

BEGIN CLOSE DECLARE DEMAND END
EVAL EXPORT FOR FUNCTION GLOBAL
IGNORE IMPORT IN INH INHERITED
INPUT LEFT LOCAL MODULE NONE
OUT OUTPUT PARSER PREC PROPERTY
REMOTE REV REVERSE RIGHT RULE
SCANNER SELECT STACK SUBUNIT SYN
SYNTHESIZED THREAD TREE VIEW VIRTUAL
VOID

2.2. Children

Children are distinguished by selector names which have to be unambiguous within one
node type. The children are of a certain node type.

Example:

If = Expr: Expr Then: Stats Else: Stats .
While = Expr: Expr Stats: Stats .

The example introduces two node types called If and While. A node of type If has three children
which are selected by the names Expr, Then, and Else. The children have the node types Expr,
Stats, and Stats.

If a selector name is equal to the associated name of the node type it can be omitted. There-
fore, the above example can be abbreviated as follows:

If = Expr Then: Stats Else: Stats .
While = Expr Stats .

2.3. Attributes

As well as children, every node type can specify an arbitrary number of attributes of arbi-
trary types. Like children, attributes are characterized by a selector name and a certain type. The
descriptions of attributes are enclosed in brackets. The attribute types are given by names taken
from the target language. Missing attribute types are assumed to be int or INTEGER depending
on the target language (C or Modula-2). Children and attributes can be given in any order. The
type of an attribute can be a pointer to a node type. In contrast to children, ast does not follow
such an attribute during a graph traversal. All attributes are considered to be neither tree nor
graph structured. Only the user knows about this fact and therefore he/she should take care.

Example:

Binary = Lop: Expr Rop: Expr [Operator: int] .
Unary = Expr [Operator] .
IntConst = [Value] .
RealConst = [Value: float] .

Ast 3

For example the node types IntConst and RealConst describe leaf nodes with an attribute
named Value of types int or float respectively. Binary and Unary are node types with an attri-
bute called Operator of type int.

2.4. Declare Clause

The DECLARE clause allows the definition of children and attributes for several node
types at one time. Following the keyword DECLARE, a set of declarations can be given. The
syntax is the same as described above with the exception that several node type names may
introduce a declaration. If there already exists a declaration for a specified node type, the chil-
dren and attributes are added to this declaration. Otherwise a new node type is introduced.

Example:

DECLARE
Decls Stats Expr = -> [Level] [Env: tEnv] .

Expr = -> Code [Type: tType] .

2.5. Extensions

To allow several alternatives for the types of children an extension mechanism is used. A
node type may be associated with several other node types enclosed in angle brackets. The first
node type is called base or super type and the latter types are called derived types or subtypes.
A derived type can in turn be extended with no limitation of the nesting depth. The extension
mechanism induces a subtype relation between node types. This relation is transitive. Where a
node of a certain node type is required, either a node of this node type or a node of a subtype
thereof is possible.

Example:

Stats = <
If = Expr Then: Stats Else: Stats .
While = Expr Stats .

> .

In the above example Stats is a base type describing nodes with neither children nor attri-
butes. It has two derived types called If and While. Where a node of type Stats is required,
nodes of types Stats, If, and While are possible. Where a node of type If is required, nodes of
type If are possible, only.

Besides extending the set of possible node types, the extension mechanism has the property
of extending the children and attributes of the nodes of the base type. The derived types possess
the children and attributes of the base type. They may define additional children and attributes.
In other words they inherit the structure of the base type. The selector names of all children and
attributes in an extension hierarchy have to be distinct. The syntax of extensions has been
designed this way in order to allow single inheritance, only. Multiple inheritance is available,
too. It is described in the next section.

Example:

Stats = Next: Stats [Pos: tPosition] <
If = Expr Then: Stats Else: Stats .
While = Expr Stats .

> .

Nodes of type Stats have one child selected by the name Next and one attribute named Pos.
Nodes of type While have three children with the selector names Next, Expr, and Stats and one
attribute named Pos.

Ast 4

A node of a base type like Stats usually does not occur in an abstract syntax tree for a com-
plete program. Still, ast defines this node type. It could be used as placeholder for unexpanded
nonterminals in incomplete programs which occur in applications like syntax directed editors.

2.6. Multiple Inheritance

The extension mechanism described in the previous section allows for single inheritance of
children and attributes. The syntax of the extensions has been designed to reflect the notation of
context-free grammars as close as possible. For multiple inheritance a different syntax and the
concept of abstract node types are used.

Abstract node types are characterized by the definition characters ’:=’ instead of ’=’ or ’:’
which are used for nonterminals or terminals. They are termed abstract because they describe
only the structure of nodes or parts thereof but nodes of this types do not exist. Therefore no
code is generated by for abstract node types: no constant, no record type, no constructor pro-
cedure, etc.. Abstract node types can be used as base types in combination with multiple inheri-
tance.

For multiple inheritance the following syntax is used: The name of a node type may be fol-
lowed by a left arrow ’<-’ and a list of names. This construct is available for all three kinds of
node types: nonterminals, terminals, and abstract node types. The names after the left arrow
have to denote abstract node types. The meaning is that the node type inherits the structure of all
listed abstract node types. Multiple inheritance is possible from abstract node types to non
abstract ones and among abstract node types. Among non abstract node types only single inheri-
tance is allowed.

Example:

DECLS := [Objects: tObjects THREAD] <
NODECLS := .
DECL := [Ident: tIdent INPUT] Next:DECLS .

> .

ENV := [Env: tEnv INH] .

USE <- ENV := [Ident: tIdent INPUT] [Object: tObject SYN] .

SCOPE <- ENV := [Objects: tObjects SYN] [NewEnv: tEnv SYN] .

Root = Proc .

Decls <- DECLS ENV = <
NoDecls = .
Decl <- DECL = <
Var = .
Proc <- SCOPE = Decls Stats .

> .
> .
Stats <- ENV = <
NoStats = .
Stat = <
Assign = Name Expr .
Call <- USE = .

> .
> .
Expr <- ENV = <
Plus = Lop: Expr Rop: Expr .
Const = [Value] .
Name <- USE = .

> .

Ast 5

The above example uses multiple inheritance and abstract node types to describe the
identification problem of programming languages. The node types written with all upper-case
letters represent abstract node types. DECLS specifies lists of declared objects, SCOPE describes
scopes or visibility regions, ENV stands for environment and is used to distribute scope informa-
tion, and USE is intended to be used at the application of identifiers. In the second part of the
example, the abstract node types are connected to nonterminal node types. Decls is the concrete
node type to describe lists of declarations. Decl represents one declaration and there are to alter-
natives, Var and Proc, variables and procedures. A procedure introduces a scope and therefore it
inherits from SCOPE. At the node types Call and Name identifiers are used and thus they inherit
from USE. Finally, the node types Decls, Stats, and Expr are regions where the environment
information has to be distributed and they inherit from ENV.

2.7. Modules

The specification of node types can be grouped into an arbitrary number of modules. The
modules allow to combine parts of the specification that logically belong together. This feature
can be used to structure a specification or to extend an existing one. A module consists of target
code sections (see section 2.12.) and specifications of node types with attribute declarations.
The information given in the modules is merged in the following way: the target code sections
are concatenated. If a node type has already been declared the given children, attributes, and
subtypes are added to the existing declaration. Otherwise a new node type is introduced. This
way of modularization offers several possibilities:

- Context-free grammar and attribute declarations (= node types) can be combined in one
module.

- The context-free grammar and the attribute declarations can be placed in two separate
modules.

- The attribute declarations can be subdivided into several modules according to the tasks of
semantic analysis. For example, there would be modules for scope handling, type determi-
nation, and context conditions.

- The information can be grouped according to language concepts or nonterminals. For
example, there would be modules containing the grammar rules and the attribute declara-
tions for declarations, statements, and expressions.

Example:

MODULE my_version

Stats = [Env: tEnv] < /* add attribute */
While = Init: Stats Terminate: Stats . /* add children */
Repeat = Stats Expr . /* add node type */

> .

END my_version

2.8. Properties

The description of children and attributes can be refined by the association of so-called pro-
perties. These properties are expressed by the keywords listed in Table 1.

The properties have the following meanings: Input attributes (or children) receive a value at
node-creation time, whereas non-input attributes may receive their values at later times. Output

attributes are supposed to hold a value at the end of a node’s existence, whereas non-output attri-
butes may become undefined or unnecessary earlier. Synthesized and inherited describe the
kinds of attributes occurring in attribute grammars. They have no meaning for ast. The property
thread supports so-called threaded attributes: An attribute declaration [a THREAD] is equivalent

Ast 6

Table 1: Properties for Children and Attributes

long form short formiiiiiiiiiiiiiiiiiiiiiiiii
INPUT IN
OUTPUT OUT
SYNTHESIZED SYN
INHERITED INH
THREAD
REVERSE REV
IGNORE
VIRTUAL

to the declaration of a pair of attributes with the suffixes In and Out: [aIn] [aOut]. These attri-
butes have to be accessed with their full name including the suffixes. The property reverse

specifies how lists should be reversed. It is discussed in section 2.11. The property ignore

instructs ast to disregard or omit an attribute or a child. It is useful in connection with the con-
cept of views (see section 2.10.). The property virtual is meaningful in attribute grammars. It is
used to describe dependencies among attributes. However, no space will be allocated for those
attributes and the attribute computations for those attributes will be omitted in the generated
attribute evaluator. Within ast the properties input, reverse, and ignore are of interest, only.

Properties are specified either locally or globally. Local properties are valid for one indivi-
dual child or attribute. They are listed after the type of this item. Example:

Stats = Next: Stats IN REV [Pos: tPosition IN] [Level INH] .

Global properties are valid for all children and attributes defined in one or several modules. They
are valid in addition to the local properties that might be specified. In order to describe global
properties, a module may contain several property clauses which are written in the following
form:

PROPERTY properties [FOR module_names]

The listed properties become valid for the given modules. If the FOR part is missing, the proper-
ties become valid for the module that contains the clause.

Example:

PROPERTY INPUT
PROPERTY SYN OUT FOR Mapping

Input attributes are included into the parameter list of the node constructor procedures (see
section 3). The global property input replaces the symbol ’->’ of former versions of ast. For
compatibility reasons this symbol still works in a restricted way: The symbol ’->’ could be
included in a list of children and attributes as a shorthand notation to separate input from
non-input items. In a list without this symbol all children and attributes are treated as input
items. This meaning of the symbol ’->’ is still in effect as long as ast does not encounter a glo-
bal property clause. After encountering such a clause, local and global properties are in effect
only – the symbol ’->’ is ignored.

Example:

Stats = Next: Stats REV [Pos: tPosition] -> [Level INH] <
If = Expr Then: Stats Else: Stats .
While = -> Expr IN Stats IN .

> .

The node types of the example possess the children and attributes listed in Table 2.

Ast 7

Table 2: Example of Properties

node selector associated kind properties
type name typeiii
Stats Next Stats child IN REV

Pos tPosition attribute IN
Level int attribute INHiii

If Next Stats child IN REV
Pos tPosition attribute IN
Level int attribute INH
Expr Expr child IN
Then Stats child IN
Else Stats child INiii

While Next Stats child IN REV
Pos tPosition attribute IN
Level int attribute INH
Expr Expr child IN
Stats Stats child IN

2.9. Subunits

Usually, an ast specification is translated into one program module. This module receives
the name that immediately follows the keyword TREE. If several modules contain a name, the
first one is chosen. If none of the modules contains a name, the default name Tree is used. It is
possible to generate several modules out of an ast specification. Then there is exactly one
module called main unit that describes the tree structure and an arbitrary number of modules
called subunits. This is of interest if the generated source code becomes too large for one com-
pilation unit. Then either some or all desired procedures could be placed into separate subunits.
In the extreme, there might be a subunit for every procedure. It is possible to have two or more
versions of one procedure (e. g. WriteTREE) where every one uses a different view (see section
2.10.).

The names of the main unit and the subunits are described in the header of an ast

specification:

[TREE [Name]] [SUBUNIT Name] [VIEW Name]

The name after the keyword VIEW is necessary if abstract syntax trees are to be processed by
program modules generated with other tools such as e. g. puma [Gro91] that need to know the
definition of the tree structure. Ast has an option that requests to write a binary version of the
tree definition to a file whose name is derived from the name given after the keyword VIEW by
appending the suffix ".TS" (Default: "Tree.TS").

Every unit has to be generated by a separate run of ast. If a subunit name is present, then a
subunit is generated – otherwise a main unit is generated. The options select the procedures to be
included in the units. It is probably wise not to include the subunit name in an ast specification.
If this name is added "on the fly" with UNIX commands then different subunits can be generated
from one specification without the need to change it.

Ast 8

Example:

ast -dim spec.ast
echo SUBUNIT read | cat - spec.ast | ast -dir
echo SUBUNIT write | cat - spec.ast | ast -diw

or
echo TREE MyTree | cat - spec.ast | ast -dim
echo TREE MyTree SUBUNIT read | cat - spec.ast | ast -dir
echo TREE MyTree SUBUNIT write | cat - spec.ast | ast -diw

2.10. Views

An ast specification can be roughly seen as a collection of node types and associated chil-
dren and attributes. A so-called view selects a subset of this collection and it may attach further
properties to some parts of this collection.

The concept of views is necessary for instance if two programs communicate a common
data structure via a file. Every program might need additional data which should neither appear
in the other program nor in the file. In order to make this work both programs must agree upon
the coding of the node types in the shared part of the data structure. This is accomplished by
using one common ast specification that contains the description of the complete data structure.
Every program uses a specific view and selects only those parts of the common specification that
are of interest. See Figure 1 for an example.

Another need for views arises if several attribute evaluators operate one after the other on
one tree. The output attributes of a preceding evaluator become the input attributes of a succeed-
ing one. Here it is necessary to be able to change the properties of attributes. In one view the
attributes are regarded as output and in the other one they are regarded as input. The usage of
views for the specification of several attribute evaluators is described in [Gro89].

Furthermore, views are necessary if abstract syntax trees are to be processed by program
modules generated with other tools such as e. g. puma [Gro91] that need to know the definition
of the tree structure. In general, there might be several tree processing modules and every one
uses a different view. In this case, the views have to be communicated to the other tool in a file.
ast has an option that requests to write a binary version of the tree definition to a file whose
name is derived from the name given after the keyword VIEW by appending the suffix ".TS"
(Default: "Tree.TS", see section on "Subunits").

The concept of views is based on the global properties:

PROPERTY properties FOR module_names

allows the dynamic addition of properties.

PROPERTY IGNORE FOR module_names

allows the suppression of all definitions given in the listed modules. Additionally there is the
so-called select clause:

SELECT module_names

This is equivalent to:

PROPERTY IGNORE FOR module_names_not_given

It is wise to assign names to all modules of an ast specification, because otherwise they can
not be selected with the select clause. Furthermore, the property or select clauses that express
views should probably not be included in the file containing the ast specification. The reason is
that this form is not flexible, because it is relatively hard to change. It is better to add the one line
that is necessary for views "on the fly" using UNIX commands like echo and cat (see Figure 1).

Ast 9

program A

main unit Tree
generated

from A and C

subunit PutTree
generated

from C

other modules

file
subunit GetTree

generated
from C

other modules

main unit Tree
generated

from B and C

program B

MODULE C
common data

MODULE B
data specific
to program B

MODULE A
data specific
to program A

specification
file: spec.ast

UNIX commands to generate the compilation units:

echo SELECT A C | cat - spec.ast | ast -dim
echo SUBUNIT PutTree SELECT C | cat - spec.ast | ast -dip
echo SELECT B C | cat - spec.ast | ast -dim
echo SUBUNIT GetTree SELECT C | cat - spec.ast | ast -dig

Fig. 1: Programs Sharing a Part of a Data Structure

2.11. Reversal of Lists

Recursive node types like Stats in the abstract grammar of the example below describe lists
of subtrees. There are at least two cases where it is convenient to be able to easily reverse the
order of the subtrees in a list. The facility provided by ast is a generalization of an idea presented
in [Par88].

2.11.1. LR Parsers

Using LR parsers, one might be forced to parse a list using a left-recursive concrete gram-
mar rule because of the limited stack size. The concrete grammar rules of the following exam-
ples are written in the input language of the parser generator Lalr [GrV88, Gro88] which is simi-
lar to the one of YACC [Joh75]. The node constructor procedures within the semantic actions
are the ones provided by ast (see section 3).

Ast 10

Example:

concrete grammar (with tree building actions):

Stats: {$$ = mStats0 (); } .
Stats: Stats Stat ’;’ {$$ = mStats1 ($2, $1);} .
Stat : WHILE Expr DO Stats END {$$ = mWhile ($2, $4);} .

abstract grammar:

Stats = <
Stats0 = .
Stats1 = Stat Stats .

> .

A parser using the above concrete grammar would construct statement lists where the list ele-
ments are in the wrong order, because the last statement in the source would be the first one in
the list. The WHILE rule represents a location where statement lists are used.

To easily solve this problem ast can generate a procedure to reverse lists. The specification
has to describe how this should be done. At most one child of every node type may be given the
property reverse. The child’s type has to be the node type itself or an associated base type. The
generated list reversal procedure ReverseTREE then reverses a list with respect to this indicated
child. The procedure ReverseTREE has to be called exactly once for a list to be reversed. This
is the case at the location where a complete list is included as subtree (e. g. in a WHILE state-
ment).

Example:

concrete grammar (with tree building actions):

Stats: {$$ = mStats0 (); } .
Stats: Stats Stat ’;’ {$$ = mStats1 ($2, $1);} .
Stat : WHILE Expr DO Stats END {$$ = mWhile ($2, ReverseTREE ($4));} .

abstract grammar:

Stats = <
Stats0 = .
Stats1 = Stat Stats REVERSE .

> .

It is possible to represent lists differently in an abstract syntax. A more sophisticated solu-
tion is given in the next example. The procedure ReverseTREE handles this variant, too.

Example:

concrete grammar (with tree building actions):

Stats: {$$ = mEmpty ();} .
Stats: Stats IF Expr THEN Stats ELSE Stats END ’;’

{$$ = mIf ($3, ReverseTREE ($5), ReverseTREE ($7), $1);} .
Stats: Stats WHILE Expr DO Stats END ’;’

{$$ = mWhile ($3, ReverseTREE ($5), $1);} .

abstract grammar:

Stats = Next: Stats REVERSE <
Empty = .
If = Expr Then: Stats Else: Stats .
While = Expr Stats .

> .

Ast 11

2.11.2. LL Parsers

Using LL parsers a similar problem as in the LR case can arise if extended BNF is used.
Lists are parsed with an iteration which is turned into a loop statement as follows: (The
identifiers Stats0, Stats1, Stat0, and Stat1 in the concrete grammar rules denote the symbolic
access to the L-attribution mechanism provided by Ell [GrV88]. These identifiers should not be
mixed up with the similar ones used as node names in the abstract syntax.)

Example:

concrete grammar (with tree building actions):

Stats: {*Stats0=mStats0 ();} (Stat ’;’ {*Stats0=mStats1 (Stat1, Stats0);}) * .
Stat : WHILE Expr DO Stats END {*Stat0=mWhile (Expr1, ReverseTREE (Stats1));} .

abstract grammar:

Stats = <
Stats0 = .
Stats1 = Stat Stats REVERSE .

> .

The list elements (statements) are inserted in the wrong order within the first concrete grammar
rule. The order is corrected by a call of the procedure ReverseTREE in the second concrete
grammar rule.

2.12. Target Code

An ast specification may include several sections containing so-called target code. This
sections follow the keywords TREE or SUBUNIT. Target code is code written in the target
language which is copied unchecked and unchanged to certain places in the generated module.
It has to be enclosed in braces ’{’ ’}’. Balanced braces within the target code are allowed.
Unbalanced braces have to be escaped by a preceding ’\’ character. In general, the escape char-
acter ’\’ escapes everything within target code. Therefore, especially the escape character itself
has to be escaped.

Example in C:

TREE SyntaxTree
IMPORT {# include "Idents.h" }
EXPORT { typedef tSyntaxTree MyTree; }
GLOBAL {# include "Idents.h"

typedef struct { unsigned Line, Column; } tPosition;
BEGIN { ... }
CLOSE { ... }

Example in Modula-2:

TREE SyntaxTree
IMPORT { FROM Idents IMPORT tIdent; }
EXPORT { TYPE MyTree = tSyntaxTree; }
GLOBAL { FROM Idents IMPORT tIdent;

TYPE tPosition = RECORD Line, Column: CARDINAL; END; }
BEGIN { ... }
CLOSE { ... }

The meaning of the sections is as follows:

IMPORT: declarations to be included in the definition module at a place where IMPORT
statements are legal.

EXPORT: declarations to be included in the definition module after the declaration of the
tree type tTREE.

Ast 12

GLOBAL: declarations to be included in the implementation module at global level.

LOCAL: same as GLOBAL within ast.

BEGIN: statements to initialize the declared data structures.

CLOSE: statements to finalize the declared data structures.

2.13. Common Node Fields

Sometimes it is desirable to include certain record fields into all node types. This can be
done directly in the target language by defining the macro TREE_NodeHead in the IMPORT or
EXPORT target code sections. These fields become members of the variant yyHead and they can
be accessed as shown in the following examples:

Example in C:

define Tree_NodeHead int MyField1; MyType MyField2;

t->yyHead.MyField1 = ... ;

Example in Modula-2:

define Tree_NodeHead MyField1: INTEGER; MyField2: MyType;

tˆ.yyHead.MyField1 := ... ;

2.14. Type Specific Operations

Procedures generated by ast apply several operations to attributes: initialization, finaliza-
tion, ascii read and write, binary read and write, and copy (see Table 3). Initialization is per-
formed whenever a node is created. It can range from assigning an initial value to the allocation
of dynamic storage or the construction of complex data structures. Finalization is performed
immediately before a node is deleted and may e. g. release dynamically allocated space. The
read and write operations enable the readers and writers to handle the complete nodes including
all attributes, even those of user-defined types. The operation copy is needed to duplicate values
of attributes of user-defined types. By default, ast just copies the bytes of an attribute to dupli-
cate it. Therefore, pointer semantics is assumed for attributes of a pointer type. If value seman-
tics is needed, the user has to take care about this operation. The operation equal checks
whether two attributes are equal. It is used as atomic operation for the procedure that tests the
equality of trees.

The operations are type specific in the sense that every type has its own set of operations.
All attributes having the same type (target type name) are treated in the same way. Chosing

Table 3: Type Specific Operations

default macro
operation macro name C Modula-2ii

initialization beginTYPE(a)
finalization closeTYPE(a)
ascii read readTYPE(a) yyReadHex (& a, sizeof (a)); yyReadHex (a);
ascii write writeTYPE(a) yyWriteHex (& a, sizeof (a)); yyWriteHex (a);
binary read getTYPE(a) yyGet (& a, sizeof (a)); yyGet (a);
binary write putTYPE(a) yyPut (& a, sizeof (a)); yyPut (a);
copy copyTYPE(a, b)
equal equalTYPE(a, b) memcmp (& a, & b, sizeof (a)) == 0 yyIsEqual (a, b)cc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Ast 13

different type names for one type introduces subtypes and allows to treat attributes of different
subtypes differently. Type operations for the predefined types of a target language are predefined
within ast (see Appendices 6 and 7). For user-defined types, ast assumes default operations (see
Table 3). The procedures yyReadHex and yyWriteHex read and write the bytes of an attribute
as hexadecimal values. The procedures yyGet and yyPut read and write the bytes of an attribute
unchanged (without conversion). The operations are defined by a macro mechanism. The pro-
cedure yyIsEqual checks the bytes of two attributes for equality. TYPE is replaced by the con-
crete type name. a is a formal macro parameter referring to the attribute. The predefined pro-
cedures mentioned in Table 3 use the global variable yyf of type FILE * or IO.tFile [Gro87]
describing the file used by the readers and writers.

It is possible to redefine the operations by including new macro definitions in the GLOBAL
section. The following example demonstrates the syntax for doing this. It shows how records of
the type tPosition might be handled and how subtypes can be used to initialize attributes of the
same type differently.

Example in C:

IMPORT {
include "Sets.h"
typedef struct { unsigned Line, Column; } tPosition;
typedef tSet Set100;
typedef tSet Set1000;
}

GLOBAL {
define begintPosition(a) a.Line = 0; a.Column = 0;
define readtPosition(a) fscanf (yyf, "%d%d", & a.Line, & a.Column);
define writetPosition(a) fprintf (yyf, "%d %d", a.Line, a.Column);

define beginSet100(a) MakeSet (& a, 100);
define closeSet100(a) ReleaseSet (& a);
define readSet100(a) ReadSet (yyf, & a);
define writeSet100(a) WriteSet (yyf, & a);

define beginSet1000(a) MakeSet (& a, 1000);
define closeSet1000(a) ReleaseSet (& a);
define readSet1000(a) ReadSet (yyf, & a);
define writeSet1000(a) WriteSet (yyf, & a);
}

Ast 14

Example in Modula-2:

IMPORT {
FROM Sets IMPORT tSet;
TYPE tPosition = RECORD Line, Column: CARDINAL; END;
TYPE Set100 = tSet;
TYPE Set1000 = tSet;

}

GLOBAL {
FROM IO IMPORT ReadI, WriteI, WriteC;
FROM Sets IMPORT MakeSet, ReleaseSet, ReadSet, WriteSet;

define begintPosition(a) a.Line := 0; a.Column := 0;
define readtPosition(a) a.Line := ReadI (yyf); a.Column := ReadI (yyf);
define writetPosition(a) WriteI (yyf, a.Line, 0); WriteC (yyf, ’ ’); \

WriteI (yyf, a.Column, 0);

define beginSet100(a) MakeSet (a, 100);
define closeSet100(a) ReleaseSet (a);
define readSet100(a) ReadSet (yyf, a);
define writeSet100(a) WriteSet (yyf, a);

define beginSet1000(a) MakeSet (a, 1000);
define closeSet1000(a) ReleaseSet (a);
define readSet1000(a) ReadSet (yyf, a);
define writeSet1000(a) WriteSet (yyf, a);
}

2.15. Storage Management

The storage management for the nodes to be created is completely automatic. Usually, the
user does not have to care about it. The predefined storage management works as follows: Every
generated tree module contains its own heap manager which is designed in favour of speed. The
constructor procedures use an in-line code sequence to obtain storage (see below). The heap
manager does not maintain free lists. It only allows to free the complete heap of one module
using the procedure ReleaseTREEModule. The procedure ReleaseTREE does not free the node
space, it only finalizes the attributes of the node.

To change the predefined behaviour, two macro definitions may be included in the GLO-
BAL section. For C these macros are initialized as follows:

define yyALLOC(ptr, size) \
if ((ptr = (tTREE) TREE_PoolFreePtr) >= (tTREE) TREE_PoolMaxPtr) \

ptr = TREE_Alloc (); \
TREE_PoolFreePtr += size;

define yyFREE(ptr, size)

For Modula-2 these macros are initialized as follows:

define yyALLOC(ptr, size) ptr := yyPoolFreePtr; \
IF SYSTEM.ADDRESS (ptr) >= yyPoolMaxPtr THEN ptr := yyAlloc (); END; \
INC (yyPoolFreePtr, size);

define yyFREE(ptr, size)

The following lines switch the heap manager to a global storage allocator with free lists:

define yyALLOC(ptr, size) ptr = Alloc (size);
define yyFREE(ptr, size) Free (size, ptr);

Now ReleaseTREE will work as expected whereas ReleaseTREEModule does not work any
more.

Ast 15

3. About the Generated Program Module

A specification as described in the previous section is translated by ast into a program
module consisting of a definition and an implementation part. Only the definition part or header
file respectively is sketched here – Appendices 4 and 5 contain the general schemes. The
definition part contains primarily type declarations to describe the structure of the trees and the
headings of the generated procedures.

Every node type is turned into a constant declaration and a struct or record declaration.
That is quite simple, because node types and record declarations are almost the same concepts
except for the extension mechanism and some shorthand notations. All these records become
members of a union type or a variant record used to describe tree nodes in general. This variant
record has a tag field called Kind which stores the code of the node type. A pointer to the variant
record is a type representing trees. Like all generated names, this pointer type is derived from
the name of the specification. Table 4 briefly explains the exported objects (replace TREE by
the name of the generated module (see section 2.12.) and <node type> by all the names of node
types). Whereas in Modula-2 the names of the constants to code the node types and the names
of the record variants are identical to the names of the node types this is not the case in C. In C
only the names of the union members are identical, the constant names are prefixed with the
letter ’k’ standing for Kind.

The parameters of the procedures m<nodetype> have to be given in the order of the input

attributes in the specification. Attributes of the base type (recursively) precede the ones of the
derived type. The procedures TraverseTREETD and TraverseTREEBU visit all nodes of a tree
or a graph respectively. At every node a procedure given as parameter is executed. An assign-
ment of a tree or graph to a variable of type tTREE can be done in two ways: The usual assign-
ment operators ’=’ or ’:=’ yield pointer semantics. The procedure CopyTREE yields value
semantics by duplicating a given graph.

The procedure QueryTREE allows to browse a tree and to inspect one node at a time. A
node including the values of its attributes is printed on standard output. Then the user is
prompted to provide one of the following commands from standard input:

parent display parent node
quit quit procedure QueryTREE
<selector> display specified child (first match, abbreviation possible)
<selector><space> display specified child (exact match, no abbreviation)

All commands can be abbreviated to an unambiguous prefix. Usually, a first match strategy is
used to determine a child from its (abbreviated) selector name. With this search strategy, chil-
dren whose name is a prefix of others may not be accessible. If an unabbreviated selector name
is supplied together with a following space character an exact match strategy is used, which
allows to access every child. The empty command behaves like parent.

The construction of the pointer and the union type above does not enforce the tree typing
rules through the types of the target language. In fact, it is possible to construct trees that violate
the specification. The user is responsible to adhere to the type rules. Most of the generated pro-
cedures do not care about the type rules. Moreover, type violations are possible and such errone-
ous trees are handled correctly by all procedures. The procedure CheckTREE can be used to
check if a tree is properly typed. In case of typing errors the involved parent and child nodes are
printed on standard error.

The binary graph writer procedure GetTREE produces a binary file containing the graph in
linearized form. The nodes are written according to a depth first traversal. Edges are either
represented by concatenation of nodes or by symbolic (integer) labels. The following kinds of
records specified by C types are written to the file:

Ast 16

Table 4: Generated Objects and Procedures

object/procedure descriptionii
k<node type> named constant to encode a node type in C
<node type> named constant to encode a node type in Modula-2
<node type> name of union member or record variant for a node type
tTREE pointer type, refers to variant record type describing all node types
TREERoot variable of type tTREE, can serve as root

(additional variables can be declared)
TREE_NodeName array mapping node types to names (strings) in C
TREE_NodeSize array mapping node types to the size of the nodes in C
yyNodeSize array mapping node types to the size of the nodes in Modula-2ii
MakeTREE node constructor procedure without attribute initialization
IsType test a node for a certain type
n<node type> node constructor procedures with attribute initialization

according to the type specific operations
m<node type> node constructor procedures with attribute initialization

from a parameter list for input attributes
ReleaseTREE node or graph finalization procedure,

all attributes are finalized, all node space is deallocated
ReleaseTREEModule deallocation of all graphs managed by a module
WriteTREENode ASCII node writer procedure
ReadTREE ASCII graph reader procedure
WriteTREE ASCII graph writer procedure
GetTREE binary graph reader procedure
PutTREE binary graph writer procedure
ReverseTREE procedure to reverse lists
TraverseTREETD top down graph traversal procedure (reverse depth first)
TraverseTREEBU bottom up graph traversal procedure (depth first search)
CopyTREE graph copy procedure
IsEqualTREE equality test procedure for trees
CheckTREE graph syntax checker procedure
QueryTREE graph browser procedure
BeginTREE procedure to initialize user-defined data structures
CloseTREE procedure to finalize user-defined data structures

define yyNil 0374
define yyNoLabel 0375
define yyLabelDef 0376
define yyLabelUse 0377

typedef unsigned char TREE_tKind; /* less than 252 node types */
typedef unsigned short TREE_tKind; /* more than 251 node types */
typedef unsigned short TREE_tLabel;

struct { char yyNil ; } NoTree;
struct { char yyLabelUse; TREE_tLabel <label>; } LabelUse;
struct { char yyLabelDef; TREE_tLabel <label>;

TREE_tKind Kind; <attributes> } LabelDef;
struct { char yyNoLabel ; TREE_tKind Kind; <attributes> } NoLabel;
struct { char Kind ; <attributes> } Kind;

Record fields whose name starts with yy have a constant value as defined. <label> is an integer

Ast 17

representing a certain address. <attributes> are written with the type specific put macros which
either copy the bytes of an attribute unchanged or do whatever the user has specified. If the value
of the tag field Kind is less than 252 then the format Kind is used, otherwise the format NoLabel

is used to write unlabeled nodes.

4. Using the Generated Program Module

This section explains how to use the objects of the generated program module. Trees or
graphs are created by successively creating their nodes. The easiest way is to call the constructor
procedures m<node_type>. These combine node creation, storage allocation, and attribute
assignment. They provide a mechanism similar to record aggregates. Nested calls of constructor
procedures allow programming with (ground) terms as in Prolog or LISP. In general, a node can
be created by a call of one of the procedures

MakeTREE, n<node type>, or m<node type>.

The type of a node can be retrieved by examination of the predefined tag field called Kind.
Alternatively the function IsType can be used to test whether a node has a certain type or a sub-
type thereof. Children and attributes can be accessed using two record selections. The first one
states the node type and the second one gives the selector name of the desired item.

Example in C:

abstract syntax:

Expr = [Pos: tPosition] <
Binary = Lop: Expr Rop: Expr [Operator: int] .
Unary = Expr [Operator] .
IntConst = [Value] .
RealConst = [Value: float] .

> .

tree construction by a term:

define Plus 1
tTREE t;
tPosition Pos;

t = mBinary (Pos, mIntConst (Pos, 2), mIntConst (Pos, 3), Plus);

tree construction during parsing:

Expr: Expr ’+’ Expr {$$.Tree = mBinary ($2.Pos, $1.Tree, $3.Tree, Plus);} .
Expr: ’-’ Expr {$$.Tree = mUnary ($1.Pos, $2.Tree, Minus); } .
Expr: IntConst {$$.Tree = mIntConst ($1.Pos, $1.IntValue); } .
Expr: RealConst {$$.Tree = mRealConst ($1.Pos, $1.RealValue); } .

tree construction using a statement sequence:

t = MakeTREE (Binary);
t->Binary.Pos.Line = 0;
t->Binary.Pos.Column = 0;
t->Binary.Lop = MakeTREE (IntConst);
t->Binary.Lop->IntConst.Pos = Pos;
t->Binary.Lop->IntConst.Value = 2;
t->Binary.Rop = MakeTREE (IntConst);
t->Binary.Rop->IntConst.Pos = Pos;
t->Binary.Rop->IntConst.Value = 3;
t->Binary.Operator = Plus;

Ast 18

access of tag field, children, and attributes:

switch (t->Kind) {
case kExpr : ... t->Expr.Pos ...
case kBinary: ... t->Binary.Operator ...

... t->Binary.Lop ...
case kUnary : ... t->Unary.Expr->Expr.Pos ...
};

Example in Modula-2:

abstract syntax:

Expr = [Pos: tPosition] <
Binary = Lop: Expr Rop: Expr [Operator: INTEGER] .
Unary = Expr [Operator] .
IntConst = [Value] .
RealConst = [Value: REAL] .

> .

tree construction by a term:

CONST Plus = 1;
VAR t: tTREE; Pos: tPosition;

t := mBinary (Pos, mIntConst (Pos, 2), mIntConst (Pos, 3), Plus);

tree construction during parsing:

Expr: Expr ’+’ Expr {$$.Tree := mBinary ($2.Pos, $1.Tree, $3.Tree, Plus);} .
Expr: ’-’ Expr {$$.Tree := mUnary ($1.Pos, $2.Tree, Minus); } .
Expr: IntConst {$$.Tree := mIntConst ($1.Pos, $1.IntValue); } .
Expr: RealConst {$$.Tree := mRealConst ($1.Pos, $1.RealValue); } .

tree construction using a statement sequence:

t := MakeTREE (Binary);
tˆ.Binary.Pos.Line := 0;
tˆ.Binary.Pos.Column := 0;
tˆ.Binary.Lop := MakeTREE (IntConst);
tˆ.Binary.Lopˆ.IntConst.Pos := Pos;
tˆ.Binary.Lopˆ.IntConst.Value := 2;
tˆ.Binary.Rop := MakeTREE (IntConst);
tˆ.Binary.Ropˆ.IntConst.Pos := Pos;
tˆ.Binary.Ropˆ.IntConst.Value := 3;
tˆ.Binary.Operator := Plus;

access of tag field, children, and attributes:

CASE tˆ.Kind OF
| Expr : ... tˆ.Expr.Pos ...
| Binary: ... tˆ.Binary.Operator ...

... tˆ.Binary.Lop ...
| Unary : ... tˆ.Unary.Exprˆ.Expr.Pos ...
END;

5. Related Research

5.1. Variant Records

Ast specifications and variant record types like in Pascal or Modula-2 are very similar.
Every node type in an ast specification corresponds to a single variant. In the generated code
every node type is translated into a record type. All record types become members of a variant

Ast 19

record type representing the type for the trees.

The differences are the following: Ast specifications are shorter than directly hand-written
variant record types. Ast specifications are based on the formalism of context-free grammars
(see section 5.3.). The generator ast automatically provides operations on record types which
would be simple but voluminous to program by hand. The node constructor procedures allow to
write record aggregates and provide dynamic storage management. The reader and writer pro-
cedures supply input and output for record types and even for complete linked data structures
such as trees and graphs.

5.2. Type Extensions

Type extensions have been introduced with the language Oberon
[Wir88a, Wir88b, Wir88c]. The extension mechanism of ast is basically the same as in Oberon.
The notions extension, base type, and derived type are equivalent. Type tests and type guards

can be easily programmed by inspecting the tag field of a node. Ast does not provide assignment
of subtypes to base types in the sense of value semantics or a projection, respectively. The tool
can be seen as a preprocessor providing type extensions for Modula-2 and C.

The second example in section 2.5. illuminates the relationship between ast and Oberon.
The node type Stats is a base type with two fields, a child and an attribute. It is extended e. g. by
the node type While with two more fields which are children.

5.3. Context-Free Grammars

As already mentioned, ast specifications are based on context-free grammars. Ast

specifications extend context-free grammars by selector names for right-hand side symbols, attri-
butes, the extension mechanism, and modules. If these features are omitted, we basically arrive
at context-free grammars. This holds from the syntactic as well as from the semantic point of
view. The names of the node types represent both terminal or nonterminal symbols and rule
names. Node types correspond to grammar rules. The notions of derivation and derivation tree
can be used similarly in both cases. The selector names can be seen as syntactic sugar and the
attributes as some kind of terminal symbols. The extension mechanism is equivalent to a short-
hand notation for factoring out common rule parts in combination with implicit chain rules.

Example:

ast specification:

Stats = Next: Stats <
If = Expr Then: Stats Else: Stats .
While = Expr Stats .

> .

corresponding context-free grammar:

Stats = Stats .
Stats = Stats If .
Stats = Stats While .
If = Expr Stats Stats .
While = Expr Stats .

In the example above, Stats corresponds to a nonterminal. There are two rules or
right-hand sides for Stats which are named If and While. The latter would be regarded as non-
terminals, too, if a child of types If or While would be specified.

Ast 20

5.4. Attribute Grammars

Attribute grammars [Knu68, Knu71] and ast specifications are based on context-free gram-
mars and associate attributes with terminal and nonterminals symbols. Additionally ast allows
attributes which are local to rules. As the structure of the tree itself is known and transparent,
subtrees can be accessed or created dynamically and used as attribute values. The access of the
right-hand side symbols uses the selector names for symbolic access instead of the grammar
symbol with an additional subscript if needed. There is no need to map chain rules to tree nodes
because of the extension mechanism offered by ast. Attribute evaluation is outside the scope of
ast. This can be done either with the attribute evaluator generator ag [Gro89] which understands
ast specifications extended by attribute computation rules and processes the trees generated by
ast or by hand-written programs that use an ast generated module. In the latter case attribute
computations do not have to obey the single assignment restriction for attributes. They can
assign a value to an attribute zero, one, or several times.

5.5. Interface Description Language (IDL)

The approach of ast is similar to the one of IDL [Lam87, NNG89]. Both specify attributed
trees as well as graphs. Node types without extensions are called nodes in IDL and node types
with extensions (base types) are called classes. Ast has simplified this to the single notion of a
node type. Attributes are treated similarly in both systems. Children and attributes are both
regarded as attributes, as structural and non-structural ones, with only little difference in
between. Both systems allow multiple inheritance of attributes, ast has a separate syntax for sin-
gle inheritance and uses the notion extension instead [Wir88c]. IDL knows the predefined types
INTEGER, RATIONAL, BOOLEAN, STRING, SEQ OF, and SET OF. It offers special opera-
tions for the types SEQ OF and SET OF. Ast really has no built in types at all, it uses the ones of
the target language and has a table containing the type specific operations e. g. for reading and
writing. Both ast and IDL allow attributes of user-defined types. In ast, the type specific opera-
tions for predefined or user-defined types are easily expressed by macros using the target
language directly. IDL offers an assertion language whereas ast does not. IDL provides a
mechanism to modify existing specifications. The module feature of ast can be used to extend
existing specifications. From ast, readers and writers are requested with simple command line
options instead of complicated syntactic constructs. Ast does not support representation
specifications, because representations are much more easily expressed using the types of the
target language directly. Summarizing, we consider ast to have a simpler specification method
and to generate more powerful features like aggregates, reversal of lists, and graph browsers.

5.6. Attribute Coupled Grammars

Attribute coupled grammars (ACG’s) [Gie88] or algebraic specifications [HHK88] have
only very little in common with ast specifications. They all view node types or rules as signa-
tures of functions. The name of the node type plays the role of the function name and describes
the result type. The types of the children and attributes correspond to the type of the function
arguments. The constructor procedures generated by ast reflect this view best.

5.7. Object-Oriented Languages

The extension mechanism of ast is exactly the same as single inheritance in object-oriented
languages like e. g. Simula [DMN70] or Smalltalk [Gol84]. The hierarchy introduced by the
extension mechanism corresponds directly to the class hierarchy of object-oriented languages.
The notions base type and super class both represent the same concept. Messages and virtual
procedures are out of the scope of ast. Virtual procedures might be simulated with
procedure-valued attributes. Table 5 summarizes the corresponding notions of trees (ast), type
extensions, and object-oriented programming.

Ast 21

Table 5: Comparison of notions from the areas of trees, types, and object-oriented programming

trees types object-oriented programmingii
node type record type class
- base type superclass
- derived type subclass
attribute, child record field instance variable
tree node record variable object, instance
- extension inheritancec

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

5.8. Tree Grammars

Conventional tree grammars are characterized by the fact that all right-hand sides start with
a terminal symbol. They are used for the description of string languages that represent trees in
prefix form. Ast specifications describe trees which are represented by (absolute) pointers from
parent to child nodes. If we shift the names of node types of ast specifications to the beginning
of the right-hand side and interpret them as terminals we arrive at conventional tree grammars.
That is exactly what is done by the ast tree/graph writers. They write a tree in prefix form and
prepend every node with the name of its node type. That is necessary to be able to perform the
read operations.

6. Hints on Specifying Abstract Syntax

- Keep the abstract syntax as short and simple as possible.

- Try to normalize by representing only the most general form.

- Normalize to the general form e. g. by adding default values.

- Normalize several concrete representations to one abstract construct.

- Map concrete to abstract syntax by disregarding the concrete syntax rules and by concen-
trating on the semantic structure of the abstract syntax.

- Map several concrete nonterminals to one abstract node type (e. g. Expr, Term, and Factor

→ Expr)

- Allow all lists to be empty regardless of the concrete syntax. Otherwise you have to pro-
cess the list element at two places in exactly the same way. This causes programming over-
head and violates the law of singularity: "One thing only once!"

- Operators can be represented by different node types (e. g. Plus, Minus, Mult, ...) or by one
node type with an attribute describing the operator (e. g. Binary).

- Lists can be represented by separate nodes for the list and the elements (e. g. Stats and Stat)
or by nodes for the elements where every node has a child that refers to the next list ele-
ment (see last example in section 2.11.1.).

7. Examples

The Appendices 1 to 3 contain examples of ast specifications.

Appendix 1 contains the concrete syntax of ast’s specification language. The node types
enclosed in quotes or starting with the character ’t’ constitute the terminals for ast’s parser. The
extensions and the node types used for the latter describe the lexical grammar.

Appendix 2 contains the concrete syntax of a small example programming language called
MiniLAX [GrK88]. The attributes specified are the ones a parser would evaluate during parsing.
The Appendices 1 and 2 show how concrete grammars can be described with ast.

Ast 22

Appendix 3 contains an abstract syntax for MiniLAX. The attributes specified are input or
intrinsic ones whose values would be provided by the scanner and parser. The definition follows
the hints of the previous section. Terminal symbols without attributes are omitted. All binary
and unary operators are expressed by two nodes having one attribute to represent the operator.
To simplify things as much as possible all lists are allowed to be empty and procedure declara-
tions as well as calls always have a parameter list. The specification tries to keep the tree as
small as possible. The inheritance mechanism allows to avoid all chain rules. There are no
nodes for sequences of declarations, statements, etc.. Instead every node for a declaration or a
statement has a field named Next describing the successor entity. Except for expressions no
separate nodes are used for identifiers. The information is included as attribute in the node types
Proc, Var, Formal, and Call. The source position is stored only at the nodes where it might be
needed during semantic analysis. The above measures not only reduce the amount of storage but
they also reduce run time because less information has to be produced and processed.

8. Experiences

Ast can be used not only for abstract syntax trees in compilers but for every tree or graph
like data structure. In general the data structure can serve as interface between phases within a
program or between separate programs. In the latter case it would be communicated via a file
using the generated reader and writer procedures.

Generated tree respectively graph modules have successfully been used in compilers e. g.
for MiniLAX [WGS89] and UNITY [Bie89] as well as for a Modula to C translator [Mar90].
The modules for the internal data structure of ast itself and the attribute evaluator generator ag

[Gro89] have also been generated by ast. Moreover, the symbol table module of the Modula to
C translator has been generated.

The advantage of this approach is that it saves considerably hand-coding of trivial declara-
tions and operations. Table 6 lists the sizes (numbers of lines) of some specifications and the
generated modules. Sums in the specification column are composed of the sizes for the
definition of node types and for user-supplied target code. Sums in the tree module column are
composed of the sizes for the definition part and for the implementation part. The reason for the
large sizes of the tree modules comes from the numerous node constructor procedures and from
the graph browser in the case of ag. These procedures proved to be very helpful for debugging
purposes as they provide readable output of complex data structures. The constructor procedures
allow to write record aggregates. Therefore, node creation and assignment of values to the com-
ponents can be written very compact. It is even possible to write (ground) terms as in Prolog or
LISP by nested calls of the constructor procedures.

Table 6: Examples of Ast Applications

application specification tree moduleiii
MiniLAX 56 202 + 835 = 1037
Modula-2 240 583 + 3083 = 3666
UNITY 210 207 + 962 = 1169
Ag 78 + 347 = 425 317 + 1317 = 1634
Definition table 82 + 900 = 982 399 + 1431 = 1830c

c
c
c
c
c
c

c
c
c
c
c
c
c

9. Usage

NAME

ast - generator for abstract structure/syntax trees

Ast 23

SYNOPSIS

ast [-options] [-ldir] [file]

DESCRIPTION

Ast generates a program module to handle arbitrary attributed trees and graphs. A typical
application is the abstract syntax tree in a compiler. The input file contains a
specification which describes the structure of all possible trees or nodes respectively and
the attributes of the nodes. Ast generates type declarations to implement the tree and
several procedures for tree manipulation including ASCII and binary readers and writers
(see options below). If file is omitted the specification is read from standard input.

OPTIONS

a generate all except -ch (default)

n generate node constructors procedures n<node> (node)

m generate node constructors procedures m<node> (make)

f generate node/tree destroyer procedure ReleaseTREE (free)

F generate general destroyer procedure ReleaseTREEModule (FREE)

o generate ASCII node writer procedure WriteTREENode (output)

r generate ASCII graph reader procedure ReadTREE

w generate ASCII graph writer procedure WriteTREE

g generate binary graph reader procedure GetTREE

p generate binary graph writer procedure PutTREE

R generate list reverser procedure ReverseTREE

t generate top down traversal procedure TraverseTREETD
(reverse depth first)

b generate bottom up traversal procedure TraverseTREEBU
(depth first)

y generate graph copy procedure CopyTREE

= generate tree equality test procedure IsEqualTREE

k generate graph checker procedure CheckTREE

q generate graph browser procedure QueryTREE

d generate definition module

i generate implementation module

s generate import statements

4 generate tree/graph description in file VIEW.TS

6 generate # line directives

7 touch output files only if necessary

8 report storage consumption

c generate C code (default is Modula-2)

h print help information

ldir dir is the directory where ast finds its table files

FILES

Ast 24

if output is in C:

<module>.h specification of the generated graph module
<module>.c body of the generated graph module
yy<module>.w macro file defining type specific operations

if output is in Modula-2:

<module>.md definition module of the generated graph module
<module>.mi implementation module of the generated graph module
<module>.imp import statements

SEE ALSO

J. Grosch: "Ast - A Generator for Abstract Syntax Trees", GMD Forschungsstelle an der
Universitaet Karlsruhe, Compiler Generation Report No. 15

J. Grosch: "Tool Support for Data Structures", Structured Programming, 12, 31-38
(1991)

References

[Bie89] F. Bieler, An Interpreter for Chandy/Misra’s UNITY, internal paper, GMD
Forschungsstelle an der Universit

..
at Karlsruhe, 1989.

[DMN70] O. Dahl, B. Myrhaug and K. Nygaard, SIMULA 67 Common Base Language -

Publication S-22, Norwegian Computing Center, Oslo, 1970.

[Gie88] R. Giegerich, Composition and Evaluation of Attribute Coupled Grammars, Acta

Inf. 25, (1988), 355-423.

[Gol84] A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison
Wesley, Reading, MA, 1984.

[Gro87] J. Grosch, Reusable Software - A Collection of Modula-Modules, Compiler
Generation Report No. 4, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep.

1987.

[GrK88] J. Grosch and E. Klein,
..
Ubersetzerbau-Praktikum, Compiler Generation Report No.

9, GMD Forschungsstelle an der Universit
..
at Karlsruhe, June 1988.

[GrV88] J. Grosch and B. Vielsack, The Parser Generators Lalr and Ell, Compiler Generation
Report No. 8, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Apr. 1988.

[Gro88] J. Grosch, Generators for High-Speed Front-Ends, LNCS 371, (Oct. 1988), 81-92,
Springer Verlag.

[Gro89] J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation Report No.
16, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Aug. 1989.

[Gro91] J. Grosch, Puma - A Generator for the Transformation of Attributed Trees,
Compiler Generation Report No. 26, GMD Forschungsstelle an der Universit

..
at

Karlsruhe, July 1991.

[HHK88] J. Heering, P. R. H. Hendriks, P. Klint and J. Rekers, The Syntax Definition

Formalism SDF - Reference Manual, ESPRIT Project GIPE, Dec. 1988.

[Joh75] S. C. Johnson, Yacc — Yet Another Compiler-Compiler, Computer Science
Technical Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

[Knu68] D. E. Knuth, Semantics of Context-Free Languages, Mathematical Systems Theory

2, 2 (June 1968), 127-146.

Ast 25

[Knu71] D. E. Knuth, Semantics of Context-free Languages: Correction, Mathematical

Systems Theory 5, (Mar. 1971), 95-96.

[Lam87] D. A. Lamb, IDL: Sharing Intermediate Representations, ACM Trans. Prog. Lang.

and Systems 9, 3 (July 1987), 297-318.

[Mar90] M. Martin, Entwurf und Implementierung eines
..
Ubersetzers von Modula-2 nach C,

Diplomarbeit, GMD Forschungsstelle an der Universit
..
at Karlsruhe, Feb. 1990.

[NNG89] J. R. Nestor, J. M. Newcomer, P. Giannini and D. L. Stone, IDL: The Language and

its Implementation, Prentice Hall, Englewood Cliffs, 1989.

[Par88] J. C. H. Park, y+: A Yacc Preprocessor for Certain Semantic Actions, SIGPLAN

Notices 23, 6 (1988), 97-106.

[WGS89] W. M. Waite, J. Grosch and F. W. Schr
..
oer, Three Compiler Specifications, GMD-

Studie Nr. 166, GMD Forschungsstelle an der Universit
..
at Karlsruhe, Aug. 1989.

[Wir88a] N. Wirth, The Programming Language Oberon, Software—Practice & Experience

18, 7 (July 1988), 671-690.

[Wir88b] N. Wirth, From Modula to Oberon, Software—Practice & Experience 18, 7 (July
1988), 661-670.

[Wir88c] N. Wirth, Type Extensions, ACM Trans. Prog. Lang. and Systems 10, 2 (Apr. 1988),
204-214.

Ast 26

Appendix 1: Syntax of the Specification Language

RULE /* Ast: concrete syntax */

/* parser grammar */

Specification = <
= TreeCodes PropPart DeclPart RulePart Modules .
= ’MODULE’ Name TreeCodes PropPart DeclPart RulePart
’END’ Name Modules .

> .
TreeCodes = <

= SubUnit .
= ’TREE’ SubUnit Codes .
= ’TREE’ Name SubUnit Codes .

> .
Codes = <

= .
= Codes ’EXPORT’ tTargetCode .
= Codes ’IMPORT’ tTargetCode .
= Codes ’GLOBAL’ tTargetCode .
= Codes ’LOCAL’ tTargetCode .
= Codes ’BEGIN’ tTargetCode .
= Codes ’CLOSE’ tTargetCode .

> .
SubUnit = <

= .
= SubUnit ’SUBUNIT’ Name .
= SubUnit ’VIEW’ Name .

> .
PropPart = Props .

Props = <
=
= Props ’PROPERTY’ Properties
= Props ’PROPERTY’ Properties ’FOR’ Names
= Props ’SELECT’ Names

> .
DeclPart = <

= .
= ’DECLARE’ Decls .

> .
Decls = <

= .
MoreNonterms = Decls Names ’=’ AttrDecls ’.’ .
MoreTerminals = Decls Names ’:’ AttrDecls ’.’ .

> .
Names = <

= .
= Names Name .
= Names ’,’ .

> .
RulePart = <

= .
= ’RULE’ Types .

> .
Types = <

= .
Nonterminal = Types Name BaseTypes ’=’ AttrDecls Extensions ’.’ .
Terminal = Types Name BaseTypes ’:’ AttrDecls Extensions ’.’ .

Ast 27

Abstract = Types Name BaseTypes ’:=’ AttrDecls Extensions ’.’ .
> .
BaseTypes = <

= .
= ’<-’ Names .

> .
Extensions = <

= .
= ’<’ Types ’>’ .

> .
AttrDecls = <

= .
ChildSelct = AttrDecls Name ’:’ Name Properties .
ChildNoSelct = AttrDecls Name Properties .
AttrTyped = AttrDecls ’[’ Name ’:’ Name Properties ’]’ .
AttrInteger = AttrDecls ’[’ Name Properties ’]’ .

> .
Properties = <

= .
= Properties ’INPUT’ .
= Properties ’OUTPUT’ .
= Properties ’SYNTHESIZED’ .
= Properties ’INHERITED’ .
= Properties ’THREAD’ .
= Properties ’REVERSE’ .
= Properties ’IGNORE’ .
= Properties ’VIRTUAL’ .

> .
Modules = <

= .
= Modules ’MODULE’ Name TreeCodes DeclPart RulePart ’END’ Name .

> .
Name = <

= tIdent .
= tString .

> .

/* lexical grammar */

tIdent : <
= Letter .
= tIdent Letter .
= tIdent Digit .
= tIdent ’_’ .

> .
tString : <

= "’" Characters "’" .
= ’"’ Characters ’"’ .

> .
tTargetCode : ’{’ Characters ’}’ .

Comment : ’/*’ Characters ’*/’ .

Characters : <
= .
= Characters Character .

> .

Ast 28

Appendix 2: Concrete Syntax of the Example Language MiniLAX

RULE

Prog = PROGRAM tIdent ’;’ ’DECLARE’ Decls ’BEGIN’ Stats ’END’ ’.’ .
Decls = <

Decls1 = Decl .
Decls2 = Decls ’;’ Decl .

> .
Decl = <

Var = tIdent ’:’ Type .
Proc0 = PROCEDURE tIdent ’;’ ’DECLARE’ Decls ’BEGIN’ Stats ’END’ .
Proc = PROCEDURE tIdent ’(’ Formals ’)’ ’;’

’DECLARE’ Decls ’BEGIN’ Stats ’END’ .
> .
Formals = <

Formals1 = Formal .
Formals2 = Formals ’;’ Formal .

> .
Formal = <

Value = tIdent ’:’ Type .
Ref = VAR tIdent ’:’ Type .

> .
Type = <

Int = INTEGER .
Real = REAL .
Bool = BOOLEAN .
Array = ARRAY ’[’ Lwb: tIntegerConst ’..’ Upb: tIntegerConst ’]’ OF Type .

> .
Stats = <

Stats1 = Stat .
Stats2 = Stats ’;’ Stat .

> .
Stat = <

Assign = Adr ’:=’ Expr .
Call0 = tIdent .
Call = tIdent ’(’ Actuals ’)’ .
If = IF Expr THEN Then: Stats ELSE Else: Stats ’END’ .
While = WHILE Expr DO Stats ’END’ .
Read = READ ’(’ Adr ’)’ .
Write = WRITE ’(’ Expr ’)’ .

> .
Actuals = <

Expr1 = Expr .
Expr2 = Actuals ’,’ Expr .

> .
Expr = <

Less = Lop: Expr ’<’ Rop: Expr .
Plus = Lop: Expr ’+’ Rop: Expr .
Times = Lop: Expr ’*’ Rop: Expr .
Not = NOT Expr .
’()’ = ’(’ Expr ’)’ .
IConst = tIntegerConst .
RConst = tRealConst .
False = FALSE .
True = TRUE .
Adr = <

Name = tIdent .
Index = Adr ’[’ Expr ’]’ .

> .
> .
tIdent : [Ident: tIdent] .
tIntegerConst : [Integer] .
tRealConst : [Real : REAL] .

Ast 29

Appendix 3: Abstract Syntax of the Example Language MiniLAX

TREE /* MiniLAX: abstract syntax */
IMPORT { FROM Idents IMPORT tIdent;

TYPE tPosition = RECORD Line, Column: CARDINAL; END; }

GLOBAL { FROM Idents IMPORT tIdent; }

RULE

MiniLax = Proc .
Decls = <

NoDecl = .
Decl = Next: Decls REV [Ident: tIdent] [Pos: tPosition] <

Proc = Formals Decls Stats .
Var = Type .

> .
> .
Formals = <

NoFormal = .
Formal = Next: Formals REV [Ident: tIdent] [Pos: tPosition] Type .

> .
Type = <

Integer = .
Real = .
Boolean = .
Array = Type [Lwb] [Upb] [Pos: tPosition] .
Ref = Type .

> .
Stats = <

NoStat = .
Stat = Next: Stats REV <

Assign = Adr Expr [Pos: tPosition] .
Call = Actuals [Ident: tIdent] [Pos: tPosition] .
If = Expr Then: Stats Else: Stats .
While = Expr Stats .
Read = Adr .
Write = Expr .

> .
> .
Actuals = <

NoActual = [Pos: tPosition] .
Actual = Next: Actuals REV Expr .

> .
Expr = [Pos: tPosition] <

Binary = Lop: Expr Rop: Expr [Operator] .
Unary = Expr [Operator] .
IntConst = [Value] .
RealConst = [Value: REAL] .
BoolConst = [Value: BOOLEAN] .
Adr = <

Index = Adr Expr .
Ident = [Ident: tIdent] .

> .
> .

Ast 30

Appendix 4: Generated Header File for C

ifndef yyTREE /* throughout replace TREE by the name of the tree module */
define yyTREE
<import_declarations>
define bool char
define NoTREE (tTREE) NULL
define k<type_1> 1
define k<type_1> 2

...
typedef unsigned short TREE_tKind; /* or char */
typedef unsigned short TREE_tMark;
typedef unsigned short TREE_tLabel;
typedef union TREE_Node * tTREE;
typedef void (* TREE_tProcTree) ();
<export_declarations>
ifndef TREE_NodeHead
define TREE_NodeHead
endif
typedef struct { TREE_tKind yyKind; TREE_tMark yyMark; TREE_NodeHead } TREE_tNodeHead;
typedef struct { TREE_tNodeHead yyHead;

<children_and_attributes_of_type_1> } y<type_1>;
typedef struct { TREE_tNodeHead yyHead;

<children_and_attributes_of_type_2> } y<type_2>;
...

union TREE_Node {
TREE_tKind Kind;
TREE_tNodeHead yyHead;
y<type_1> <type_1>;
y<type_2> <type_2>;
...

};
extern tTREE TREERoot;
extern unsigned long TREE_HeapUsed;
extern unsigned short TREE_NodeSize [];
extern char * TREE_NodeName [];
extern tTREE n<type_1> ();
extern tTREE n<type_2> ();

...
extern tTREE m<type_1> (<input_children_and_attributes_of_type_1>);
extern tTREE m<type_2> (<input_children_and_attributes_of_type_2>);

...
extern tTREE MakeTREE (TREE_tKind Kind);
extern bool TREE_IsType (tTREE t, TREE_tKind Kind);
extern void ReleaseTREE (tTREE t);
extern void ReleaseTREEModule ();
extern void WriteTREENode (FILE * f, tTREE t);
extern void WriteTREE (FILE * f, tTREE t);
extern tTREE ReadTREE (FILE * f);
extern void PutTREE (FILE * f, tTREE t);
extern tTREE GetTREE (FILE * f);
extern void TraverseTREETD (tTREE t, void (* Procedure) (tTREE t));
extern void TraverseTREEBU (tTREE t, void (* Procedure) (tTREE t));
extern tTREE ReverseTREE (tTREE t);
extern tTREE CopyTREE (tTREE t);
extern bool CheckTREE (tTREE t);
extern void QueryTREE (tTREE t);
extern bool IsEqualTREE (tTREE t1, tTREE t2);
extern void BeginTREE ();
extern void CloseTREE ();
endif

Ast 31

Appendix 5: Generated Definition Module for Modula-2

DEFINITION MODULE TREE;
IMPORT IO; (* throughout replace TREE by the name of the tree module *)

<import_declarations>

CONST
NoTREE = NIL;
<type_1> = 1;
<type_2> = 2;
...

TYPE
tTREE = POINTER TO yyNode;
tProcTree = PROCEDURE (tTREE);

<export_declarations>

TYPE
yytNodeHead = RECORD yyKind, yyMark: SHORTCARD; END;

TYPE
y<type_1> = RECORD yyHead: yytNodeHead;

<children_and_attributes_of_type_1> END;
y<type_2> = RECORD yyHead: yytNodeHead;

<children_and_attributes_of_type_2> END;
...

yyNode = RECORD
CASE : SHORTCARD OF
| 0 : Kind: SHORTCARD;
| ... : yyHead: yytNodeHead;
| <type_1> : <type_1> : y<type_1>;
| <type_2> : <type_2> : y<type_2>;
...
END;

END;

VAR TREERoot : tTREE;
VAR HeapUsed : LONGCARD;
VAR yyNodeSize: ARRAY [...] OF SHORTCARD;

PROCEDURE n<type_1> (): tTREE;
PROCEDURE n<type_2> (): tTREE;
...
PROCEDURE m<type_1> (<input_children_and_attributes_of_type_1>): tTREE;
PROCEDURE m<type_2> (<input_children_and_attributes_of_type_2>): tTREE;
...
PROCEDURE MakeTREE (Kind: SHORTCARD): tTREE;
PROCEDURE IsType (Tree: tTREE; Kind: SHORTCARD): BOOLEAN;
PROCEDURE ReleaseTREE (Tree: tTREE);
PROCEDURE ReleaseTREEModule;
PROCEDURE WriteTREENode (f: IO.tFile; Tree: tTREE);
PROCEDURE WriteTREE (f: IO.tFile; Tree: tTREE);
PROCEDURE ReadTREE (f: IO.tFile): tTREE;
PROCEDURE PutTREE (f: IO.tFile; Tree: tTREE);
PROCEDURE GetTREE (f: IO.tFile): tTREE;
PROCEDURE ReverseTREE (Tree: tTREE): tTREE;
PROCEDURE TraverseTREETD (Tree: tTREE; Proc: tProcTree);
PROCEDURE TraverseTREEBU (Tree: tTREE; Proc: tProcTree);
PROCEDURE CopyTREE (Tree: tTREE): tTree;
PROCEDURE CheckTREE (Tree: tTREE): BOOLEAN;
PROCEDURE QueryTREE (Tree: tTREE);
PROCEDURE IsEqualTREE (Tree1, Tree2: tTREE): BOOLEAN;
PROCEDURE BeginTREE;
PROCEDURE CloseTREE;

END TREE.

Ast 32

Appendix 6: Predefined Type Operations for C

/* int */
define beginint(a)
define closeint(a)
define readint(a) (void) fscanf (yyf, "%d", & a);
define writeint(a) (void) fprintf (yyf, "%d", a);
define getint(a) yyGet ((char *) & a, sizeof (a));
define putint(a) yyPut ((char *) & a, sizeof (a));
define copyint(a, b)
define equalint(a, b) a == b
/* short */
define beginshort(a)
define closeshort(a)
define readshort(a) (void) fscanf (yyf, "%hd", & a);
define writeshort(a) (void) fprintf (yyf, "%hd", a);
define getshort(a) yyGet ((char *) & a, sizeof (a));
define putshort(a) yyPut ((char *) & a, sizeof (a));
define copyshort(a, b)
define equalshort(a, b) a == b
/* long */
define beginlong(a)
define closelong(a)
define readlong(a) (void) fscanf (yyf, "%ld", & a);
define writelong(a) (void) fprintf (yyf, "%ld", a);
define getlong(a) yyGet ((char *) & a, sizeof (a));
define putlong(a) yyPut ((char *) & a, sizeof (a));
define copylong(a, b)
define equallong(a, b) a == b
/* unsigned */
define beginunsigned(a)
define closeunsigned(a)
define readunsigned(a) (void) fscanf (yyf, "%u", & a);
define writeunsigned(a) (void) fprintf (yyf, "%u", a);
define getunsigned(a) yyGet ((char *) & a, sizeof (a));
define putunsigned(a) yyPut ((char *) & a, sizeof (a));
define copyunsigned(a, b)
define equalunsigned(a, b) a == b
/* float */
define beginfloat(a)
define closefloat(a)
define readfloat(a) (void) fscanf (yyf, "%g", & a);
define writefloat(a) (void) fprintf (yyf, "%g", a);
define getfloat(a) yyGet ((char *) & a, sizeof (a));
define putfloat(a) yyPut ((char *) & a, sizeof (a));
define copyfloat(a, b)
define equalfloat(a, b) a == b
/* double */
define begindouble(a)
define closedouble(a)
define readdouble(a) (void) fscanf (yyf, "%lg", & a);
define writedouble(a) (void) fprintf (yyf, "%lg", a);
define getdouble(a) yyGet ((char *) & a, sizeof (a));
define putdouble(a) yyPut ((char *) & a, sizeof (a));
define copydouble(a, b)
define equaldouble(a, b) a == b
/* bool */
define beginbool(a)
define closebool(a)
define readbool(a) a = fgetc (yyf) == ’T’;

Ast 33

define writebool(a) (void) fputc (a ? ’T’ : ’F’, yyf);
define getbool(a) yyGet ((char *) & a, sizeof (a));
define putbool(a) yyPut ((char *) & a, sizeof (a));
define copybool(a, b)
define equalbool(a, b) a == b
/* char */
define beginchar(a)
define closechar(a)
define readchar(a) a = fgetc (yyf);
define writechar(a) (void) fputc (a, yyf);
define getchar(a) yyGet ((char *) & a, sizeof (a));
define putchar(a) yyPut ((char *) & a, sizeof (a));
define copychar(a, b)
define equalchar(a, b) a == b
/* tString */
define begintString(a)
define closetString(a)
define readtString(a)
define writetString(a) (void) fputs (a, yyf);
define gettString(a)
define puttString(a)
define copytString(a, b)
define equaltString(a, b) strcmp (a, b)
/* tStringRef */
define begintStringRef(a)
define closetStringRef(a)
define readtStringRef(a)
define writetStringRef(a) WriteString (yyf, a);
define gettStringRef(a)
define puttStringRef(a)
define copytStringRef(a, b)
define equaltStringRef(a, b) a == b
/* tIdent */
define begintIdent(a)
define closetIdent(a)
define readtIdent(a) a = yyReadIdent ();
define writetIdent(a) WriteIdent (yyf, a);
define gettIdent(a) yyGetIdent (& a);
define puttIdent(a) yyPutIdent (a);
define copytIdent(a, b)
define equaltIdent(a, b) a == b
/* tSet */
define begintSet(a)
define closetSet(a)
define readtSet(a) ReadSet (yyf, & a);
define writetSet(a) WriteSet (yyf, & a);
define gettSet(a)
define puttSet(a)
define copytSet(a, b)
define equaltSet(a, b) IsEqual (& a, & b)
/* tPosition */
define begintPosition(a)
define closetPosition(a)
define readtPosition(a)
define writetPosition(a) WritePosition (yyf, a);
define gettPosition(a)
define puttPosition(a)
define copytPosition(a, b)
define equaltPosition(a, b) Compare (a, b) == 0

Ast 34

Appendix 7: Predefined Type Operations for Modula-2

(* INTEGER *)
define beginINTEGER(a)
define closeINTEGER(a)
define readINTEGER(a) a := IO.ReadI (yyf);
define writeINTEGER(a) IO.WriteI (yyf, a, 0);
define getINTEGER(a) yyGet (a);
define putINTEGER(a) yyPut (a);
define copyINTEGER(a, b)
define equalINTEGER(a, b) a = b
(* SHORTINT *)
define beginSHORTINT(a)
define closeSHORTINT(a)
define readSHORTINT(a) a := IO.ReadI (yyf);
define writeSHORTINT(a) IO.WriteI (yyf, a, 0);
define getSHORTINT(a) yyGet (a);
define putSHORTINT(a) yyPut (a);
define copySHORTINT(a, b)
define equalSHORTINT(a, b) a = b
(* LONGINT *)
define beginLONGINT(a)
define closeLONGINT(a)
define readLONGINT(a) a := IO.ReadI (yyf);
define writeLONGINT(a) IO.WriteI (yyf, a, 0);
define getLONGINT(a) yyGet (a);
define putLONGINT(a) yyPut (a);
define copyLONGINT(a, b)
define equalLONGINT(a, b) a = b
(* CARDINAL *)
define beginCARDINAL(a)
define closeCARDINAL(a)
define readCARDINAL(a) a := IO.ReadI (yyf);
define writeCARDINAL(a) IO.WriteI (yyf, a, 0);
define getCARDINAL(a) yyGet (a);
define putCARDINAL(a) yyPut (a);
define copyCARDINAL(a, b)
define equalCARDINAL(a, b) a = b
(* SHORTCARD *)
define beginSHORTCARD(a)
define closeSHORTCARD(a)
define readSHORTCARD(a) a := IO.ReadI (yyf);
define writeSHORTCARD(a) IO.WriteI (yyf, a, 0);
define getSHORTCARD(a) yyGet (a);
define putSHORTCARD(a) yyPut (a);
define copySHORTCARD(a, b)
define equalSHORTCARD(a, b) a = b
(* LONGCARD *)
define beginLONGCARD(a)
define closeLONGCARD(a)
define readLONGCARD(a) a := IO.ReadI (yyf);
define writeLONGCARD(a) IO.WriteI (yyf, a, 0);
define getLONGCARD(a) yyGet (a);
define putLONGCARD(a) yyPut (a);
define copyLONGCARD(a, b)
define equalLONGCARD(a, b) a = b
(* REAL *)
define beginREAL(a)
define closeREAL(a)
define readREAL(a) a := IO.ReadR (yyf);
define writeREAL(a) IO.WriteR (yyf, a, 0, 6, 1);

Ast 35

define getREAL(a) yyGet (a);
define putREAL(a) yyPut (a);
define copyREAL(a, b)
define equalREAL(a, b) a = b
(* LONGREAL *)
define beginLONGREAL(a)
define closeLONGREAL(a)
define readLONGREAL(a) a := IO.ReadR (yyf);
define writeLONGREAL(a) IO.WriteR (yyf, a, 0, 6, 1);
define getLONGREAL(a) yyGet (a);
define putLONGREAL(a) yyPut (a);
define copyLONGREAL(a, b)
define equalLONGREAL(a, b) a = b
(* BOOLEAN *)
define beginBOOLEAN(a)
define closeBOOLEAN(a)
define readBOOLEAN(a) a := IO.ReadB (yyf);
define writeBOOLEAN(a) IO.WriteB (yyf, a);
define getBOOLEAN(a) yyGet (a);
define putBOOLEAN(a) yyPut (a);
define copyBOOLEAN(a, b)
define equalBOOLEAN(a, b) a = b
(* CHAR *)
define beginCHAR(a)
define closeCHAR(a)
define readCHAR(a) a := IO.ReadC (yyf);
define writeCHAR(a) IO.WriteC (yyf, a);
define getCHAR(a) yyGet (a);
define putCHAR(a) yyPut (a);
define copyCHAR(a, b)
define equalCHAR(a, b) a = b
(* BITSET *)
define beginBITSET(a)
define closeBITSET(a)
define readBITSET(a) yyReadHex (a);
define writeBITSET(a) yyWriteHex (a);
define getBITSET(a) yyGet (a);
define putBITSET(a) yyPut (a);
define copyBITSET(a, b)
define equalBITSET(a, b) a = b
(* BYTE *)
define beginBYTE(a)
define closeBYTE(a)
define readBYTE(a) yyReadHex (a);
define writeBYTE(a) yyWriteHex (a);
define getBYTE(a) yyGet (a);
define putBYTE(a) yyPut (a);
define copyBYTE(a, b)
define equalBYTE(a, b) a = b
(* WORD *)
define beginWORD(a)
define closeWORD(a)
define readWORD(a) yyReadHex (a);
define writeWORD(a) yyWriteHex (a);
define getWORD(a) yyGet (a);
define putWORD(a) yyPut (a);
define copyWORD(a, b)
define equalWORD(a, b) a = b
(* ADDRESS *)
define beginADDRESS(a)
define closeADDRESS(a)

Ast 36

define readADDRESS(a) yyReadHex (a);
define writeADDRESS(a) yyWriteHex (a);
define getADDRESS(a) yyGet (a);
define putADDRESS(a) yyPut (a);
define copyADDRESS(a, b)
define equalADDRESS(a, b) a = b
(* tString *)
define begintString(a)
define closetString(a)
define readtString(a) Strings.ReadL (yyf, a);
define writetString(a) Strings.WriteL (yyf, a);
define gettString(a) yyGet (a);
define puttString(a) yyPut (a);
define copytString(a, b)
define equaltString(a, b) Strings.IsEqual (a, b)
(* tStringRef *)
define begintStringRef(a)
define closetStringRef(a)
define readtStringRef(a)
define writetStringRef(a) StringMem.WriteString (yyf, a);
define gettStringRef(a)
define puttStringRef(a)
define copytStringRef(a, b)
define equaltStringRef(a, b) a = b
(* tIdent *)
define begintIdent(a)
define closetIdent(a)
define readtIdent(a) a := yyReadIdent ();
define writetIdent(a) Idents.WriteIdent (yyf, a);
define gettIdent(a) yyGetIdent (a);
define puttIdent(a) yyPutIdent (a);
define copytIdent(a, b)
define equaltIdent(a, b) a = b
(* tText *)
define begintText(a)
define closetText(a)
define readtText(a)
define writetText(a) Texts.WriteText (yyf, a);
define gettText(a)
define puttText(a)
define copytText(a, b)
define equaltText(a, b) FALSE
(* tSet *)
define begintSet(a)
define closetSet(a)
define readtSet(a) Sets.ReadSet (yyf, a);
define writetSet(a) Sets.WriteSet (yyf, a);
define gettSet(a)
define puttSet(a)
define copytSet(a, b)
define equaltSet(a, b) Sets.IsEqual (a, b)
(* tRelation *)
define begintRelation(a)
define closetRelation(a)
define readtRelation(a) Relations.ReadRelation (yyf, a);
define writetRelation(a) Relations.WriteRelation (yyf, a);
define gettRelation(a)
define puttRelation(a)
define copytRelation(a, b)
define equaltRelation(a, b) Relations.IsEqual (a, b)
(* tPosition *)

Ast 37

define begintPosition(a)
define closetPosition(a)
define readtPosition(a)
define writetPosition(a) Positions.WritePosition (yyf, a);
define gettPosition(a)
define puttPosition(a)
define copytPosition(a, b)
define equaltPosition(a, b) Positions.Compare (a, b) = 0

Ast 1

Contents

1. Introduction .. 1

2. Specification ... 1

2.1. Node Types .. 1

2.2. Children ... 2

2.3. Attributes ... 2

2.4. Declare Clause ... 3

2.5. Extensions .. 3

2.6. Multiple Inheritance ... 4

2.7. Modules .. 5

2.8. Properties ... 5

2.9. Subunits .. 7

2.10. Views ... 8

2.11. Reversal of Lists .. 9

2.11.1. LR Parsers .. 9

2.11.2. LL Parsers .. 11

2.12. Target Code .. 11

2.13. Common Node Fields .. 12

2.14. Type Specific Operations ... 12

2.15. Storage Management ... 14

3. About the Generated Program Module .. 15

4. Using the Generated Program Module .. 17

5. Related Research .. 18

5.1. Variant Records ... 18

5.2. Type Extensions ... 19

5.3. Context-Free Grammars .. 19

5.4. Attribute Grammars ... 20

5.5. Interface Description Language (IDL) .. 20

5.6. Attribute Coupled Grammars ... 20

5.7. Object-Oriented Languages ... 20

5.8. Tree Grammars .. 21

6. Hints on Specifying Abstract Syntax ... 21

7. Examples .. 21

8. Experiences .. 22

9. Usage .. 22

References .. 24

Appendix 1: Syntax of the Specification Language .. 26

Appendix 2: Concrete Syntax of the Example Language MiniLAX 28

Appendix 3: Abstract Syntax of the Example Language MiniLAX 29

Appendix 4: Generated Header File for C ... 30

Appendix 5: Generated Definition Module for Modula-2 31

Appendix 6: Predefined Type Operations for C .. 32

Appendix 7: Predefined Type Operations for Modula-2 34

Ast 2

